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Abstract
We investigate the non-equilibrium dynamics of an isolated polymer in a
stationary elongational flow. We compute the relaxation time to the steady-state
configuration as a function of the Weissenberg number. A strong increase of the
relaxation time is found around the coil–stretch transition, which is attributed
to the large number of polymer configurations. The relaxation dynamics of
the polymer is solved analytically in terms of a central two-point connection
problem for the singly confluent Heun equation.

PACS numbers: 05.10.Gg, 47.57.Ng, 02.30.Hq

1. Introduction

Dilute polymer solutions exhibit physical behaviours that distinguish them from ordinary
Newtonian fluids. Even a small polymer concentration can considerably change the large-scale
behaviour of the flow by enhancing viscosity and reducing the turbulent drag. A comprehensive
understanding of hydrodynamical properties of polymer solutions is still lacking despite the
large number of industrial applications (e.g. Sreenivasan and White (2000)). A starting point
for the theoretical description of dilute polymer solutions is the dynamics of isolated polymer
molecules. The knowledge of how a single molecule is deformed by the velocity gradient
allows the development of constitutive models that in turn can be used to calculate the large
scale flow. The stationary dynamics of a single, isolated polymer has received much attention
to date (see Larson (2005), Shaqfeh (2005), for a review). In contrast, less is known about
non-equilibrium dynamics of isolated polymers in flow. Since Rouse (1953) and Zimm’s
(1956) seminal works, experimental, numerical and theoretical studies focused on the internal
relaxation dynamics of a polymer floating in a solvent under the influence of Brownian
fluctuations. The two model situations considered were (a) a polymer suspended in solution
and pulled at the ends (Quake et al 1997, Hatfield and Quake 1999); (b) a tethered polymer
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submitted to a uniform flow and freely relaxing after cessation of the flow (Perkins et al 1994,
Brochard-Wyart 1995, Manneville et al 1996, Rzehak and Zimmermann 2002). The above
studies did not take into account the interaction between the polymer and an external flow.
Hernández Cifre and Garcı́a de la Torre (1999) note that Rouse and Zimm’s theories may not
provide the adequate time scale for coil–stretch processes in flow on the basis of Brownian
dynamics simulations. Here, we investigate how an elongational flow influences polymer
relaxation dynamics. We determine the time scale associated with polymer deformation in the
flow and show a significant deviation from Rouse and Zimm’s predictions in the vicinity of
the coil–stretch transition. Our analysis is based on an eigenvalue problem for the confluent
Heun equation, and constitutes a new physical application of this latter equation.

Polymer dynamics is extremely rich already in simple deterministic flows, such as
elongational flows (Perkins et al 1997, Smith and Chu 1998), shear flows (Smith et al
1999, Celani et al 2005b, Puliafito and Turitsyn 2005, Gerashchenko and Steinberg 2006)
or combinations of the two (Hur et al 2002, Babcock et al 2003). The velocity gradient of a
non-uniform flow stretches the polymer, while entropic forces attempt to restore the polymer
into the coiled equilibrium shape. In other words, the configuration of the polymer results
from the counterbalance between the entropic forces and the hydrodynamic drag. Here we
consider an elongational flow, which is defined by a constant velocity gradient λ. This flow
is particularly effective in stretching polymers far from their equilibrium configuration. A
transition to the stretched state of the polymer occurs as the velocity gradient exceeds the
critical value λc = 1/(2τ), where τ is the time associated with the slowest relaxation mode
of the polymer in thermal equilibrium with the surrounding medium. For λ < λc polymers
stay in the coiled equilibrium configuration; for λ > λc they become fully extended. This
phenomenon is known as the coil–stretch transition (de Gennes 1974). Rouse (1953) computed
τ as a function of the number of monomers in the polymer assuming the polymer could be
described as a beads-and-springs chain with Hookean interactions. Zimm (1956) refined
Rouse’s prediction by taking into account hydrodynamic interactions between segments of the
chain.

The study of polymer dynamics has benefited from a class of mesoscopic models that
are based on a coarse-grained treatment of the polymer molecule. One of the simplest is the
elastic dumbbell model, which only takes into account the slowest oscillation mode of the
molecule (Bird et al 1987). Notwithstanding this crude simplification, the dumbbell model
captures the main aspects of polymer dynamics in elongational flows, such as the coil–stretch
transition (Perkins et al 1997) and finite-time conformation hysteresis (Schroeder et al 2003,
2004). We examine how the probability density function (PDF) of the extension of a dumbbell-
like molecule approaches its stationary form. We compute the typical time it takes for the
initial PDF to attain its steady-state form and show that, in the proximity of the coil–stretch
transition, this time is exceedingly long compared to τ . A similar behaviour is encountered
in white-in-time isotropic random flows (Celani et al 2005a, Martins Afonso and Vincenzi
2005); however, for an elongational flow the amplification of the transient relaxation time is
much stronger.

The problem is solved within the framework of the Fokker–Planck equation for the PDF
of the extension of the polymer. The computation of the transient relaxation time is recast as
a central two-point connection problem (CTCP) for a singly confluent Heun equation. The
Heun equation is the general Fuchsian differential equation with four regular singularities.
Its singly confluent form, also known as the generalized spheroidal wave equation, results
from the merging of two regular singularities into one irregular singularity of Poincaré rank 1
(see Slavyanov (1995) for a review). A CTCP is an eigenvalue problem for an ordinary
differential equation where (a) at both endpoints of the interval of definition is located a
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singularity of the equation; (b) the solutions are required to have a specified asymptotic
behaviour while approaching the two singularities from inside. Contrary to the hypergeometric
equation, an explicit formula for the CTCP is not known for the Heun family of equations.
The eigenvalues can be determined only as solutions of transcendental equations involving
continued fractions. Well-known applications of the confluent Heun equation are the electronic
spectra of the hydrogen-molecule ion in the Born–Oppenheimer approximation (Jaffé 1933)
and the Teukolsky equation describing small perturbations to the Kerr geometry in black hole
theory (Leaver 1985). For a comprehensive introduction to physical applications of the Heun
equations we refer the reader to the book by Slavyanov and Lay (2000).

The rest of this paper is organized as follows. The dumbbell model is introduced in
section 2. The computation of the transient relaxation time and the related CTCP for the
confluent Heun equation are presented in section 3. Section 4 is devoted to conclusions.

2. Elastic dumbbell model

When one is interested in the statistics of polymer extension the dynamics of a polymer
molecule can be described, to a first approximation, in terms of its slowest oscillation mode.
In this case, the molecule can be modelled as an elastic dumbbell, i.e. as two beads connected
by a spring. The beads represent the ends of the molecule and the spring models entropic
forces. The separation between the beads measures the extension of the polymer. When
introduced into a non-uniform flow the molecule experiences collisions with fluid particles
and becomes stretched under the action of the velocity gradient. In the simplest case, the
drag force is assumed to be proportional to the velocity of the polymer relative to the fluid
and thermal agitation is modelled by Brownian motion. In most applications the extension of
the polymer remains smaller than the dissipative scale of the carrier flow, and therefore the
velocity field can be assumed to be linear4. The separation vector of the ends of the polymer,
Q, is then a stochastic process evolving according to the three-dimensional stochastic ordinary
differential equation5 (e.g. Bird et al (1987))

dQ = Q · ∇v(s) ds − f (Q)
Q

2τ
ds +

√
Q2

0

τ
dB(s), (1)

where Q = |Q|,Q2
0 is the equilibrium mean-square separation of the ends of the molecule, and

B(s) denotes the three-dimensional standard Brownian motion. The function f determines
the entropic force. We consider the finitely extensible nonlinear elastic (FENE) dumbbell
model with

f (Q) = 1

1 − Q2/L2
, 0 � Q < L,

where L is the maximum extension of the molecule. The force diverges as the molecular
extension approaches L; thus the extension of the molecule will be finite and smaller
than L. The FENE model is appropriate for synthetic polymers such as polyacrylamide
and polyethyleneoxide; biological macromolecules such as DNA and polypeptides are
better described by the worm-like chain model (e.g. Larson (2005)). In elongational-flow
experiments, the flexibility parameter b = L2

/
Q2

0 usually ranges from 102 to 104 (Larson
2005, Shaqfeh 2005).

4 Davoudi and Schumacher (2006) recently investigated the situation where the extension of the polymer can reach
the inertial range of turbulence.
5 There is no Ito–Stratonovich ambiguity in this case because the coefficient of Brownian motion does not depend
on Q.
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The FENE model (1) neglects hydrodynamic interactions between the segments of the
polymer. Inclusion of hydrodynamic interactions makes the coil–stretch transition sharper,
but do not change the transition qualitatively (e.g. Wiest et al (1989), Hernández Cifre and
Garcı́a de la Torre (1998, 1999)). Furthermore, the dumbbell model without hydrodynamic
interactions accurately reproduces the extension–strain curve observed in experiments (Perkins
et al 1997). The accuracy of the model can be ascribed to the cancellation between the effect
of the distribution of drag forces along the chain and the effect of the increase in effective drag
coefficient with polymer extension (Larson et al 1997). Neglecting hydrodynamic interactions
has the benefits of providing analytical results.

3. Relaxation dynamics

A steady planar elongational flow is characterized by one direction of stretch, one direction of
compression and one neutral direction. The velocity gradient is constant along the directions
of both the extensional and compressional axes: ∇j vi = λ(δi1δj1 − δi2δj2), λ > 0. When a
polymer is immersed in that flow the first component of the separation vector rapidly becomes
much greater than the other components: Q1 � Q2 and Q1 � Q3. The extension of
the molecule, therefore, is approximatively Q � Q1, and f (Q) can be replaced by f (Q1).6

According to this approximation, the first component of (1) gives a one-dimensional stochastic
differential equation for the extension of the dumbbell:

dQ = λQ ds − f (Q)
Q

2τ
ds +

√
Q2

0

τ
dB(s), (2)

where B(s) is the one-dimensional Brownian motion. For the sake of notational simplicity,
we introduce the rescaled separation vector q = Q/L. The PDF of q = |q|, ψ(q; t) with
q ∈ [0, 1], satisfies the one-dimensional Fokker–Planck equation associated with (2) (e.g.
Stratonovich (1963))

∂tψ = L ψ,

L ψ := − ∂

∂q

[(
Wi − f̂ (q)

2

)
qψ

]
+

1

2b

∂2ψ

∂q2
,

(3)

where t = s/τ, f̂ (q) = f (Lq) and Wi = λτ . The dimensionless number Wi is known
as the Weissenberg number and measures the level of polymer stretching. For Wi < 1/2
polymers are in the coiled state; for Wi > 1/2 polymers are fully extended. The critical value
Wic = λcτ = 1/2 marks the coil–stretch transition in elongational flows (de Gennes 1974).
Strictly speaking, the approximation leading to (2) and (3) holds true when the polymer is
sufficiently stretched, i.e. only for Wi � Wic. Equation (3), indeed, does not yield a good
approximation of ψ(q; t) at low Wi. However, as we shall see at the end of this section, it is
appropriate to investigate polymer relaxation dynamics in terms of (2) and (3) also below the
coil–stretch transition.

The Fokker–Planck equation (3) is solved with reflecting boundary conditions, that is the
probability current

j (q; t) = Wi qψ(q; t) − f̂ (q)

2
qψ(q; t) − 1

2b

∂ψ

∂q

∣∣∣∣
q,t

is assumed to vanish at the endpoints of the interval of definition: j (0; t) = j (1; t) = 0 ∀ t > 0

6 The above approximation holds true for a steady uniaxial extensional flow as well: ∇j vi = λ(δi1δj1 − δi2δj2/2 −
δi3δj3/2). Therefore, the results henceforth presented are unchanged for this flow.
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(Stratonovich 1963). Under these conditions, the stationary distribution of the extension,
ψ0(q) = limt→∞ ψ(q; t), can be derived by simple integration (Bird et al 1987):

ψ0(q) = N ebWi q2
(1 − q2)

b
2 , 0 � q � 1, (4)

where

N = 2�((b + 3)/2)/[
√

π�(b/2 + 1) × 1F1(1/2; (b + 3)/2; bWi)]

and � and 1F1 denote the Euler Gamma function and the confluent hypergeometric function,
respectively (e.g. Erdélyi et al (1953)). Large extensions become more and more probable
with increasing Wi in accordance with experiments (Perkins et al 1997). Note however that,
at low Wi, equation (4) does not constitute a good description of the PDF of small extensions
due to the approximation behind (3).

The time behaviour of the system depends on the form of the spectrum of the operator L
with reflecting boundary conditions:

L ψµ = −µψµ, (5)

jµ(0) = jµ(1) = 0, (6)

where jµ denotes the probability current associated with the eigenfunction ψµ. Under
conditions (6), L is non-positive defined and symmetric with respect to the scalar product
with weighting function 1/ψ0. Its eigenvalues µ are therefore real and non-negative, µ = 0
being associated with the long-time solution ψ0 (Stratonovich 1963). If L has a countable
spectrum {0, µ1, µ2, . . .} with µi < µi+1, then Trel = τ/µ1 is the characteristic time needed
for ψ(q; t) to attain its long-time form ψ0(q) when the initial condition ψ(q; 0) is taken far
from equilibrium (Schenzle and Brand 1979). We note that while τ is the relaxation time of
the polymer in the absence of flow, Trel characterizes polymer relaxation dynamics in the flow.

To compute Trel, we need to solve the eigenvalue problem (5), (6). By making the
substitutions z = q2, ψµ(z) = (1 − z)

b
2 wµ(z), we can rewrite (5) in the form

w′′
µ +

(
β +

γ

z
+

δ

z − 1

)
w′

µ +
αβz − ν

z(z − 1)
wµ = 0, (7)

where w′
µ := dwµ/dz, γ = 1/2, δ = b/2, α = (1 + b − µ/Wi)/2, β = −bWi and

ν = b(µ − Wi)/2. The above equation is a singly confluent Heun equation in the non-
symmetrical canonical form (Decarreau et al 1978a, 1978b, Slavyanov 1995)7.

Equation (7) has two regular singularities at z = 0 and z = 1 and an irregular singularity
of Poincaré rank 1 at z = ∞. The characteristic exponents at z = 0 are 0 and 1 − γ ; at
z = 1, they are 0 and 1 − δ. We neglect the case of b integer and odd since it does not have
physical relevance. Consequently, there are no logarithmic solutions and, for |z| < 1, wµ(z)

can be written as wµ(z) = a0ϕ0(z) + d0z
1/2χ0(z) with a0, d0 complex constants and ϕ0, χ0

analytic functions of z (equivalently of q2) such that ϕ0(0) 
= 0 and χ0(0) 
= 0. Similarly, for
|z − 1| < 1, wµ(z) takes the form wµ(z) = a1ϕ1(z − 1) + d1(1 − z)1−b/2χ1(z − 1) with a1, d1

complex constants and ϕ1, χ1 analytic functions of z such that ϕ1(0) 
= 0 and χ1(0) 
= 0.
It is easily seen that boundary conditions (6) can be matched only by those solutions of (7)

that belong to the exponent 0 both in z = 0 and z = 1 (that is both d0 and d1 have to be zero)8.
The eigenvalue problem defined by (5) and (6) is therefore mapped into a CTCP on [0, 1]

7 The worm-like chain model, f̂ (q) = 2/3−1/(6q)+1/[6q(1−q)2], would lead to a second-order linear differential
equation with two irregular singularities of Poincaré rank 1 and 3, respectively. The FENE model in a δ-correlated
random flow can be solved in terms of a general Heun equation (Martins Afonso and Vincenzi 2005).
8 We leave aside the case b = 2 since it does not have physical relevance.
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for the confluent Heun equation (7). To compute the eigenvalues µ, we adapt the procedure
exploited by Svartholm (1939) and Erdélyi (1942, 1944) to (7) (see also Slavyanov (1995),
Slavyanov and Lay (2000)). We then expand wµ in series of Jacobi polynomials having the
required characteristic exponent at z = 0 and z = 1:

wµ(z) =
∞∑

n=0

cn(µ)un(z), (8)

with

un(z) = 2F1(−n, ω + n; γ ; z) = (−1)n
n!

√
π

�(n + γ )
P (ω−γ,γ−1)

n (2z − 1)

and ω = γ + δ − 1. The function 2F1 denotes the Gauss hypergeometric function; P
(ω−γ,γ−1)
n

are the Jacobi polynomials of parameters ω − γ and γ − 1 and degree n (e.g. Erdélyi et al
(1953)). The conditions for the convergence of (8) will determine the spectrum of L .

By defining the operators

D1wµ := z(z − 1)

[
w′′

µ +

(
γ

z
+

δ

z − 1

)
w′

µ

]
,

D2wµ := −z(z − 1)w′
µ,

we can rewrite (7) in the form

D1wµ + εD2wµ + (ρz + σ)wµ = 0, (9)

where ε = bWi, ρ = b[µ − (1 + b)Wi]/2, σ = b(Wi − µ)/2. The polynomials un satisfy the
differential relations (Erdélyi et al 1953)

D1un = n(ω + n)un (10)

and

D2un = Ãnun+1 + B̃nun + C̃nun−1, (11)

with

Ãn = n(n + ω)(n + γ )

(2n + ω)(2n + ω + 1)
, B̃n = n(n + ω)(δ − γ )

(2n + ω − 1)(2n + ω + 1)
,

C̃n = − n(n + ω)(n + δ − 1)

(2n + ω)(2n + ω − 1)
.

In addition, the following recurrence relation holds (Erdélyi et al 1953):

zun = Ânun+1 + B̂nun + Ĉnun−1, (12)

with coefficients

Ân = − (n + γ )(n + ω)

(2n + ω)(2n + ω + 1)
, B̂n = 2n(n + ω) + γ (ω − 1)

(2n + ω − 1)(2n + ω + 1)
,

Ĉn = − n(n + δ − 1)

(2n + ω − 1)(2n + ω)
.

Inserting expansion (8) in (9) and exploiting relations (10), (11), (12) yield the following
three-term recurrence relation for cn(µ):

g−1c0 = 0 (13)

g0c1 + h0c0 = 0 (14)

gncn+1 + hncn + kncn−1 = 0 for n � 2, (15)
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where the coefficients

gn = εC̃n+1 + ρĈn+1, hn = n(ω + n) + εB̃n + ρB̂n + σ,

kn = εÃn−1 + ρÂn−1

depend on µ through ρ and σ . The asymptotic behaviour of hn/gn and kn/gn is given by

hn

gn

∼ −4n

ε
and

kn

gn

∼ −1 (n → ∞). (16)

According to the Perron–Kreuser theorem (e.g. Gautschi (1967), Wimp (1984)), (16) implies
that the recurrence relation (15) has two linearly independent solutions

(
c+
n

)
n

and (c−
n )n such

that

c+
n+1

c+
n

∼ 4n

ε
and

c−
n+1

c−
n

∼ − ε

4n
(n → ∞). (17)

The above sequences have the property limn→∞ c−
n

/
c+
n = 0; hence (c−

n )n is what is called a
minimal solution of (15). Every other solution non-proportional to (c−

n )n is asymptotically
proportional to

(
c+
n

)
n
, and therefore diverges with increasing n. Therefore, we can already say

that (8) can converge only if the sequence (cn)n is a minimal solution of (15).
The second limit in (17) implies that limn→∞

n
√

|c−
n | = 0. This condition ensures that, if

the coefficients cn form a minimal solution of (15), then expansion (8) converges absolutely
to an analytic function in the whole complex plane (Szegö 1939, p 252).

Nonetheless, it is also required that cn = 0 for n < 0, that is the sequence (cn)n is subject
to initial conditions (13) and (14). Equation (13) is trivially satisfied since g−1 = 0, and so
does (14) for µ = 0. (This is in accordance with the fact that ψ0 exists for all Wi and b.)
However, for µ 
= 0, equation (14) fixes the ratio c1/c0 = −(b + 3)/2. This latter requirement
is not satisfied by whatever µ and therefore selects the spectrum of L .

To summarize, the spectrum of L is the set of those µ such that (cn(µ))n�0 is a minimal
solution of (15) satisfying c1(µ)/c0(µ) = −(b+3)/2. From Pincherle’s theorem (e.g. Gautschi
(1967), p 31), this conclusion is equivalent to stating that the eigenvalues µ are the solutions
of

k1/g1

h1/g1 − k2/g2

h2/g2 − k3/g3

h3/g3 − · · ·

= b + 3

2
.

The latter represents a transcendental equation for the relaxation spectrum associated with the
Fokker–Planck equation (3). The reciprocal of the smallest nonzero solution is Trel/τ .

We calculated Trel numerically by means of the modified Miller algorithm (Wimp 1984,
pp 82–85). The behaviour of Trel as a function of Wi is reported in figure 1. For very small
Wi the influence of the external flow is negligible and Trel is approximately equal to τ . With
increasing Wi the ratio Trel/τ starts growing as 1/(1 − 2Wi). This behaviour can be deduced
by replacing the spring force with a Hookean force, f̂ (q) = 1, and computing the relaxation
of the moments of q. For a fixed b, the rescaled relaxation time reaches a sharp maximum Tmax

in the neighbourhood of the coil–stretch transition (Wic = 1/2); the value of Tmax increases
linearly with

√
b (figure 2). With increasing b, Trel attains its maximum value Tmax closer and

closer to Wic and the width of the peak decreases (figure 2). For large Wi the relaxation time
is fixed by the time scale of the flow λ−1, and therefore Trel/τ decreases as Wi−1.

The computation of Trel shows that, near the coil–stretch transition, the typical time scale
involved in polymer relaxation dynamics is strongly different from τ . The time associated
with the fundamental oscillation mode is not representative of polymer temporal dynamics



10698 D Vincenzi and E Bodenschatz

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  0.2  0.4  0.6  0.8  1

T
re

l/
τ

Wi

 1

 3

 5

 0  0.2  0.4

Figure 1. Rescaled relaxation time Trel/τ as a function of the Weissenberg number Wi for
b = 600.25; the inset shows the comparison with the small Wi behaviour 1/(1 − 2Wi) (dashed
line).
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Figure 3. Stationary PDF of the extension and eigenfunction of the Fokker–Planck operator L
associated with the smallest nonzero eigenvalue µ1. The eigenfunctions have been computed
numerically by means of the iteration-variation method (Morse and Feshbach 1953).

in flow. These results confirm the behaviour encountered in isotropic δ-correlated Gaussian
flows (Celani et al 2005a, Martins Afonso and Vincenzi 2005), but here the enhancement of
Trel is stronger since the elongational flow is more efficient in deforming polymers.

In Brownian dynamics simulations and experiments the relaxation time of ψ(q; t) can
be measured from the decay of the moments of the extension to their steady-state value.
To observe Trel, one has to make sure that the initial condition ψ(q; 0) is not orthogonal to
the first eigenfunction of L , that is ψ1(q) in (5), with respect to the scalar product with
weighting function ψ0(q). Figure 3 shows the shape of ψ1(q) for different Wi. An initial PDF
concentrated either at a coiled or a stretched extension q̄ (formally ψ(q; 0) = δ(q − q̄)) has
projection onto ψ1(q) equal to ψ1(q̄)/ψ0(q̄) by construction (e.g. Stratonovich (1963)). The
initial condition with all the polymers having the same extension q̄ is therefore not orthogonal
to ψ1(q) if ψ1(q̄) 
= 0; all the moments will thus tend to their stationary value with a typical
time scale Trel.

We now show that it is accurate to compute Trel by means of (3) also for Wi < Wic. At low
Wi, the entropic force can be modelled as a Hookean force, i.e. f (Q) = 1 in (1). The vector
equation (1) therefore reduces to a set of three decoupled stochastic differential equations for
Q1,Q2, Q3. Hence we have �(q; t) = ψ(1)(q1; t)ψ(2)(q2; t)ψ(3)(q3; t), where �(q; t) is the
PDF of the vector q and ψ(i)(qi; t) is the PDF of the ith component of q. The relaxation time
of �(q; t) is thus the longest of the relaxation times of ψ(1)(q1; t), ψ(2)(q2; t) and ψ(3)(q3; t)

given that all ψ(i)(qi; t) have a non-trivial long-time limit. It is easy to check that at low
Wi the relaxation time of ψ(1)(q1; t) is T

(1)
rel = τ/(1 − 2Wi), while T

(2)
rel = τ/(1 + 2Wi) and

T
(3)

rel = τ (with obvious notation). The function �(q; t) therefore has the same relaxation time
as ψ(1)(q1; t). Now we note that ψ(q; t) and �(q; t) have the same long-time behaviour since
ψ(q; t) = q2

∫ π

0

∫ 2π

0 �(q(q, ϑ, φ); t) sin ϑ dϑdφ. We thus come to the following conclusion:
the relaxation times of ψ(q; t) and ψ(1)(q1; t) coincide at low Wi and ψ(1)(q1; t) satisfies (3).
This fact explains why (3) yields an accurate computation of Trel also below the coil–stretch
transition.

4. Summary and conclusions

We have investigated the relaxation dynamics of an isolated polymer in an external flow.
Previous studies focused on the relaxation of a polymer in a solvent driven only by Brownian



10700 D Vincenzi and E Bodenschatz

motion. Those studies determined the time τ associated with the slowest oscillation mode
of the molecule in the absence of external flow. We have considered an elongational flow
and derived a transcendental equation for the relaxation spectrum associated with the time
evolution of the PDF of polymer extension. The problem of computing this spectrum has been
recast as a central two-point connection problem for a confluent Heun equation. The Heun
equation results from the separation of the time variable in the Fokker–Planck equation for the
PDF of the extension.

Our analysis shows that an external elongational flow strongly influences polymer
relaxation dynamics. The longest relaxation time associated with the evolution of the PDF
of the extension provides an estimation of the time scale of polymer deformation. Near
the coil–stretch transition, this time is significantly greater than τ (already one order of
magnitude greater for short molecules). The physical reason is the large number of polymer
configurations close to the coil–stretch transition. At intermediate Weissenberg numbers
polymer conformation results from a critical competition between the entropic force and the
velocity gradient. Therefore, around the transition, coiled and stretched polymer coexist in the
flow, and this makes the relaxation to the equilibrium PDF particularly long. It is worth noting
that the amplification of the relaxation time is stronger when hydrodynamic interactions
are taken into account; this behaviour is intimately related to the finite-time conformation
hysteresis observed in elongational flows (Celani et al 2006).
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